Wavelet estimation of functional coefficient regression models
نویسندگان
چکیده
منابع مشابه
Sieve Instrumental Variable Quantile Regression Estimation of Functional Coefficient Models∗
In this paper, we consider sieve instrumental variable quantile regression (IVQR) estimation of functional coefficient models where the coefficients of endogenous regressors are unknown functions of some exogenous covariates. We approximate the unknown functional coefficients by some basis functions and estimate them by the IVQR technique. We establish the uniform consistency and asymptotic nor...
متن کاملVarying-Coefficient Functional Linear Regression Models
We propose in this work a generalization of the functional linear model in which an additional real variable influences smoothly the functional coefficient. This leads us to build a varying-coefficient regressionmodel for functional data. We propose two estimators based respectively on conditional functional principal regression and on local penalized regression splines and prove their pointwis...
متن کاملFunctional Coefficient Nonstationary Regression ∗
This paper studies a general class of nonlinear varying coefficient time series models with possible nonstationarity in both the regressors and the varying coefficient components. The model accommodates a cointegrating structure and allows for endogeneity with contemporaneous correlation among the regressors, the varying coefficient drivers, and the residuals. This framework allows for a mixtur...
متن کاملVarying-coefficient functional linear regression
NCSU, Princeton University, and UC-Davis Abstract: Functional linear regression analysis aims to model regression relations which include a functional predictor. The analogue to the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If in addition one has scalar predictors, ...
متن کاملFunctional Coefficient Autoregressive Models: Estimation and Tests of Hypotheses
In this paper, we study nonparametric estimation and hypothesis testing procedures for the functional coef®cient AR (FAR) models of the form Xt f1(X tÿd)X tÿ1 f p(X tÿd)X tÿ p å t, ®rst proposed by Chen and Tsay (1993). As a direct generalization of the linear AR model, the FAR model is a rich class of models that includes many useful parametric nonlinear time series models such as the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Wavelets, Multiresolution and Information Processing
سال: 2018
ISSN: 0219-6913,1793-690X
DOI: 10.1142/s0219691318500042